An Optimal Method to Estimate the Spherical Harmonic Components of the Surface Air Temperature

نویسنده

  • SAMUEL S. SHEN
چکیده

This paper describes a method that minimizes the mean squared error (MSE) in estimating the spherical harmonic components of the surface air temperature field. The ratio of the MSE to the variance of the spherical harmonic component is expressed in terms of the length scale Xo, and the positions and weights of the measurement stations. The weights are optimized by the condition of minimizing the sampling error. To present an analytical example, we assume the homogeneous statistics of the temperature anomaly field, and take the low frequency approximation (i.e. ignoring the time dependence). The spectra of the temperature anomaly are the coefficients of a Fourier-Legendre series of the covariance function, and they are analytically derived from a linear noise forced energy balance climate model. Consequently, the MSE, the percentage sampling error, and the signal-noise ratio are computed for a given network of stations. Our results show that: (i) the sampling errors computed from both optimal weights and uniform weights increase with respect to the order of the spherical harmonic component; (ii) the sampling errors computed from optimal weights are significantly smaller than those from uniform weights for sufficiently dense networks. With about 60 reasonably positioned stations for sampling the spherical harmonic components T , , Tlo and TII, one can get the sampling error below 10 per cent when the optimal weights are applied. An experiment with 210 stations produces the sampling errors of less than 10 per cent for the spherical harmonic components from Too up to TS4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Estimation of Harmonic Components Using ISFLA

In this paper a novel method based on evolutionary algorithms is presented to estimate the harmonic components. In general, the optimization of the harmonic estimation process is a multi-component problem, in which evaluation of the phase and harmonic frequency is the nonlinear part of the problem and is solved based on the mathematical and evolutionary methods; while estimation of amplitude of...

متن کامل

Estimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power

Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...

متن کامل

تخمین بهینه هارمونیک ها با استفاده از الگوریتم IGHS

This paper presents an improved global-best harmony search (IGHS) method to estimate the harmonics in power systems. It utilizes IGHS to estimate the harmonic components of a distorted signal along with adaptive noise. The harmonic estimation problem is linear in amplitudes and nonlinear in phases and frequencies. IGHS is used to estimate phases and frequencies, whereas the least square (LS) me...

متن کامل

Comparison of Some Split-window Algorithms to Estimate Land Surface Temperature from AVHRR Data in Southeastern Tehran,

Land surface temperature (LST) is a significant parameter for many applications. Many studies have proposedvarious algorithms, such as the split-window method, for retrieving surface temperatures from two spectrallyadjacent thermal infrared bands of satellite data. Each algorithm is developed for a limited study area andapplication. In this paper, as part of developing an optimal split-window m...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996